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A Note on Validity Generalization Procedures

We have been informed recently that the scientific status of personnel

research will "greatly advance" if the hypothesis that validities are

situationally specific is found to be false (Schmidt, Hunter, & Pearlman,

1982, p. 841; see also Schmidt & Hunter, 1977, 1978, 1980). The term

"situational specificity" holds that true validities (i.e., population

correlations unaffected by statistical artifacts, indicated by Pi, ± =

1,...,K populations) vary as a function of validation situation (setting,

study), or d 2 > 0 (cf. Hunter, Schmidt, & Jackson, 1982). In
'T

contrast to situational specificity, we will use the term "cross-situational

consistency" to refer to conditions in which the pi are constant over K
populations (situations) and all variation among observed validities (r.,

i = 1,...,K) is attributable to sampling error and other types of

statistical artifacts such as variations in criterion reliabilities and

variances (cf. Hunter & Hunter, 1984; Hunter, Schmidt & Jackson, 1982;

Hunter, Schmidt, & Pearlman, 1981, 1982; Schmidt, Hunter, Pearlman, & Shane,

1979; see also Callender & Osburn, 1980, 1981, 1982; Raju & Burke, 1983). A

constant p across situations implies that validity is generalizable or

"transportable" (Schmidt et al., 1982, p. 81), although the term "validity

generalization" refers to a less demanding condition in which "most of the

values of estimated true validities...lie in the positive range" (Schmidt et

al., 1982, pp. 840, 841).

The term "validity generalization approach (analysis, procedure)" is

4

* . * .S * * * * .-. *S
;' .' ' ... ." . '. . '. ,.' '. ..- -'..'. ' " ]- .. . ' . '. .'."S . . . . . .. . - " .. .,' - . .. ... ,



Validity Generalization

3

employed here to refer broadly to the assumptions and quantitative techniques

used by the proponents of this approach to contrast cross-situational

consistency with situational specificity. It is noteworthy that proponents

of the validity generalization approach have based their substantive and

statistical developments on structural equations for observed validities,

the objective being to identify causes for variation among validity

coefficients and thereby construct explanatory models for validity

distributions (cf. Schmidt, Gast-Rosen~trg, & Hunter, 1980). Indeed, the

attempt to construct useful explanatory models for validity distributions is

made possible because structural equations provide explicit, quantitative

statements of statistical theory regarding the rules that presumably govern.

the occurrences of validities. The validity generalization approach also

proposes quantitative methods for assessing the goodness of fit of the

* structural equations--that is, for confirming or disconfirming predictions

evolving from the causal models for validities and validity distributions.

The end-products of these tests have serious implications for

" industrial-organizational psychologists, an example being that confirmation

of a cross-situational consistency model implies that validity studies may

not have to be repeated in each situation in which a test is used.

Industrial-organizational psychologists are playing for high stakes

here, and rigorous review is needed of the statistical foundations for the

structural equations (i.e., causal models) for validities and validity

distributions, the methods for confirming or disconfirming predictions

evolving from the causal models, and the causal inferences that derive from

results of the confirmatory (i.e., validity generalization) analyses. Our

6
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objective is to furnish at least a partial review. To set the stage for the

review, consider the following quotations, which describe what the key

proponents of the validity generalization approach intended to do and their

perceptions of the results of their efforts.

In order to establish such patterns of relationships, it is first

necessary to demonstrate that the doctrine of situational specificity is

false or essentially false. If the situational specificity hypothesis

is rejected, then it follows that various constructs--for example,

spatial ability--have invariant population relationships with

specified kinds of performances and job behaviors (Schmidt et al., 1979,

p. 267, italics added).

Schmidt and Hunter (1977) showed that ignoring sampling error leads to

disastrous results in the area of personnel selection. Because he

ignored the effect of sampling error on the variance of findings across

studies, Ghiselli (1966, 1973) concluded that tests are only valid on a

sporadic basis, that validity varies from one setting to another because

of subtle differences in job requirements that have not yet been

discovered (Hunter & Hunter, 1984, p. 77).

In conclusion, our evidence shows that the validity of the cognitive

tests studied is neither specific to situations nor specific to jobs

(Schmidt & Hunter, 1981, p. 1133).

The evidence from these two studies appears to be the last nail required

for the coffin of the situational specificity hypothesis (Schmidt,

6t
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Hunter, Pearlman, & Hirsh, 1984, p. 73).

The problem with these conclusions is that they are stated in a

categorical manner that implies irrefutable evidence in favor of a

cross-situational consistency structural model and against a situational

specificity structural model. Little attention is given to the possibility

that future tests based on different assumptions might disconfirm

cross-situational consistency or at least furnish an alternative view that

explains the data as well as cross-situational consistency. To be specific,

empirical support for a causal theory implies that a theory is a useful

guide to explanation. It does not imply that the theory is true or unique

because (a) empirical analyses usually involve untested assumptions that may

be false, and (b) a set of observed data may be explained equally well by

more than one causal theory (James, Mulaik, & Brett, 1982). These would seem

to be pertinent concerns given that the null hypothesis of situational

specificity had not been rejected in 54% (80 of 151) of the validity

distributions reviewed by Schmidt, Hunter, and colleagues at the time of the

Schmidt et al. (1982) article.

Our objective is to demonstrate that alternative assumptions and views

exist even though validity generalization procedures appear to support a

causal inference that validities are cross-situationally consistent. The

first step toward this objective is to use validity generalization procedures

to show that a cross-situational consistency causal model has a good

empirical fit with a contrived distribution of observed validities. A number

of simplifying assumptions were made with respect to the validity

."
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distribution and the analyses in order to focus on matters of principle. The

simplifying assumptions were: (a) sampling error explains the lion's share

of variation among observed validities (Hunter & Hunter, 1984; Schmidt et

al., 1982) and thus sampling error is the only statistical artifact

introduced into the distribution; (b) the sample size for each sample

- (nt) is a constant equal to 70, which simplifies equations but retains

reasonable and realistic sampling error (Lent, Aurbach, & Levin, 1971); (c)

only one sample was obtained from each of K situations, which is the

typical case in practice; and (d) sampling was done randomly from a bivariate

normal population underlying each situation.

The second step toward the goal of demonstrating alternative views and

assumptions involves proposing an alternative explanatory model to

cross-situational consistency and then showing that this alternative model

also has a good empirical fit with the (same) contrived distribution of

observed validities. The third and final step is to show that many of the

statistical assumptions on which validity generalization analyses are based

are false. The paper is concluded with recommendations for future uses of

validity generalization procedures and research on cross-situational

consistency versus situational specificity.

An Overview of the Valdity Generalization Approach

The validity generalization approach is a form of a statistical "what

if" scenario. One devises a statistical scenario, applies the scenario to

data on the assumption that the scenario is valid, and ascertains the

statistical consequences. The key "what if" assumption for the validity

- .... . _/ ',. ." .. * . . . . ... ..... ,... *. . . . . .o.- * .. , .. ..... . .
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generalization procedure is: What if "...the population correlation is

assumed to be constant over studies" (Hunter, Schmidt, & Jackson, 1982, p.

40)? Let's proceed as if this assumption is valid for the 30 contrived

validity coefficients (observed correlations or rt, 1 =1,..., 30 studies,

situations, populations) presented in Table 1. The distribution of contrived

validities was based on the premises that (a) the "true validity" for tests

for many jobs is at least .50 (Hunter & Hunter, 1984; Pearlman, Schmidt, &

Hunter, 1980); (b) sampling error is the only statistical artifact in

operation; and (c) the sampling distribution has a slight negative skew (for

reasons addressed later). In addition, the distribution was purposefully

designed to illustrate a condition in which multiple conclusions could be

drawn regarding causes of variance among the n1, the supposition being

that empirical confirmation of more than one explanatory model precludes

exclusive reliance on a particular explanatory model (e.g., cross-situational

consistency). In this regard, the range of correlations in the contrived

distribution is about the same as the range of simulated true validities used

by Osburn, Callender, Greener, and Ashworth (1983, p. 117) in their

"moderate true variance" distribution. The original (and simplified)

E validity generalization (VG) equations based on Hunter, Schmidt, and Jackson

(1982), and their ensuing estimates for the data in Table 1, are presented in

Table 2.

Insert Tables 1 and 2 about here

-- - - - - - - - -
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Equation 1 in Table 2 furnishes the mean observed validity (?), which

is an estimate of the constant population correlation "p" if indeed a

constant correlation is a viable alternative to the null hypothesis of

situation specificity (i.e., o2 > 0). The null hypothesis is tested

by comparing the variance among the observed validities (i.e., s r2,

Equation 2) to an estimate of the variance among these validities that would

be expected from sampling error exclusively (i.e., _2, Equation 3).

The comparison typically takes the form of the ratio_2/s
2

-e r

which is:

the proportion of observed variance (the denominator) that is accounted

for by statistical artifacts (the numerator). The numerator in this

ratio is the variance in observed validities predicted from artifacts

alone; the denominator is the observed (computed) variance of these

validities. We have used this ratio to draw conclusions about the

situational specificity hypothesis, that is, the hypothesis that

[E_ 2 ] >0. The rule that we have used in our research ih that if

this ratio (expressed as a percentage) is 75% or greater, we reject the

hypothesis that [6.2] >0. The rationale for this decision rule is

that the remaining artifacts for which we cannot correct are likely to

account for at least 25% of the observed variance (Schmidt et al., 1982,

p. 840; terms in brackets reflect statistical designations used in the

present discussion).

A2 2
The ratio /sr2 reported in Table 2 is .75 (75%), which

satisfies the VG decision rule. According to this rule, the,conclusion

I
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should be that the situational specificity hypothesis (d 2 > 0) is

disconfirmed because essentially 100% of the variation among validities in

Table 1 can be attributed to sampling error and other, unmeasured statistical

artifacts. Moreover, according to the Schmidt et al. (1979, p. 267)

rationale quoted earlier, it follows from rejection of the situation

specificity hypothesis that the predictor construct (e.g., spatial ability)

has "invariant population relationships with specified kinds of performances

and job behaviors." This is cross-situational consistency.

Affirming the consequent. Does it in fact follow that population

relationships are Invariant if the situational specificity hypothesis is

rejected? The answer is no. Indeed, the Schmidt et al. (1979) statement

illustrates a form of logical fallacy known as "affirming the consequent"

(cf. James et al., 1982). This logical fallacy occurs when a good fit

between predictions from a causal theory and empirical data is used to infer

that the theory actually and uniquely explains the data. The fallacy of such

an inference is, as noted, that other causal theories may explain the same

data as well as the theory of interest and that assumptions used to conduct
4i

the empirical test may be false. To avoid the fallacy of affirming the

consequent, one notes that (a) empirical support for a causal theory

indicates that the theory furnishes a useful basis for explanation without

(b) inferring that the theory furnishes a unique basis for explanation.

In the present case, the finding that _e 2r 2=e -7r

indicates a good empirical fit between the data and a causal theory

(explanatory model) of cross-situational consistency--according to the VG

4
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decision rule, that is. Accepting the VG decision rule as valid for the

moment, the inference should be that cross-situational consistency furnishes

a useful explanation for the observed variance among the Ei. The

inference should not be that the population correlations are invariant

because this implies that cross-situational consistency furnishes the only,

or a unique, explanation for the data. Indeed, an exclusive attribution to

cross-situational consistency is an illustration of affirming the consequent

because alternative views (explanations) are consistent with the data in

Table 1 and because untested assumptions can be shown to be false. The issue

of alternative explanations is addressed below. This discussion is followed

by consideration of false assumptions.

Alternative Explanations

In the interest of constrast to the VG approach, it is assumed now

that Ghiselli (1966, 1973) was correct in concluding that validity is

situationally specific. Situational specificity is presumed to be due in

part to unknown differences in the measurement (latent structure) models for

job performance and in job requirements over studies (situations) (Ghiselli,

1966, 1973). It is presumed further that situational specificity among

correlations between a person variable predictor (e.g., cognitive skills) and

a criterion (e.g., job performance) is also a potential function of

moderating effects due to variation among situations in variables such as

leadership, reward structures and processes, group cohesiveness, stress and

coping mechanisms for stress, systems norms and values (e.g., conformity,

loyalty), socialization strategies, formal and informal communication nets,

* . . . . . . * . . .
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formalization and standardization of structure, and physical environments

(e.g., privacy), to name a few variables. While we presently lack

empirically confirmed, explanatory models for job performance that integrate

situational variables and person variables (cf. James & Jones, 1976), there

" is no dearth of basic psychological theories that portray behavior (which

includes job performance) as a function of person variables, situational

variables, and various forms of interactions between person variables and

situational variables, including nonadditive person by situation interactions

(cf. Bowers, 1973; Ekehammer, 1974; Endler & Magnusson, 1976; Lewin, 1938;

Lichtman & Hunt, 1971; Pervin, 1968). It is a simple matter to employ these

theories to develop models in which the correlation between a person

variable and job performance varies as a function of levels or scores on

situational variables. Furthermore, if we postulate that no two situations

have an identical pattern of scores on the situational variables

(moderators), then we may logically entertain the notion that each situation

represents a different (sub)population with a different (sub)population

validity.

We will therefore proceed to implement a situational specificity "what

if" scenario based on the assumption that a unique population validity

underlies each situation (study). We begin with the psychometric analogy

employed by Hunter, Schmidt, and Jackson (1982) to establish a statistical

foundation for VG analysis. The basic structural (causal) equation is:

Li = + (5)

r.
4 p,

............................................
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In terms of the psychometric analogy, ni is the observed score

(correlation) for a subject (sample) from population (situation) p, i.

is the true score (population correlation) for situation i, and e is

the random measurement (sampling) error associated with ri" The

situational specificity hypothesis is again d > 0. Here, however, we

have as many populations as we have situations or studies, which denotes that

each of the 30 observed correlations in Table 1 is a single representation of
its specific pi. That is, only one random sample (ni = 70) has been

drawn from the specific bivariate normal distribution associated with each

situation. We may also view each rt as a single realization (sample of

one) from a sampling distribution comprised of an infinite number of

independently estimated correlations, where each correlation is based on a

sample of 70 subjects drawn randomly from a population having Pi as a

correlation. There are 30 such sampling distributions.

A point that is typically not considered in VG analysis is that

"reasonable limits" for each pi can be estimated based on the inequality

-_ iei' < <ri + 2(-6ei), where a'ei is an estimate of the
error of measurement for population i (Gulliksen, 1950, p. 20). The

equation fo is addressed later in this paper. To illustrate the use
A

of reasonable limits, Cei for rt = .26 is .11 and reasonable limits

for the true (population) correlation are .04 to .48. An estimate of 'ei

for .72 is .06, and the reasonable limits for pt are .60 to .84.

If we were to establish reasonable limits for each of the 30 PI and then

view the 30 ranges jointly, we would find that the joint range of reasonable

4 ' , . * . . .. . .- , . . - . ' , ' . " . . " o , .. -' . " ", .' ' ,, .' .., ' . .' .." ' ,, ' -' - . ,
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limits of possible values of the 30 pi varies from .04 to .84.

We now have two interpretations for the same set of correlations, one

furnished by VG analysis that suggests that the pi are constant and equal

to .50, and one furnished by a situational specificity hypothesis that

suggests that the pi are different and could range between .04 and .84.

The VG analysis reported in Table 2 supports the former, cross-situational

consistency model. What evidence is there for the latter, situational

specificity model? Well, we have an analysis based on chi-square to

test the null hypothesis that -a for all i, or d_ 2 = 0.

This test, given in Cohen and Cohen (1975, p. 52; the equation in Cohen &

Cohen, 1983, p. 55 is missing a salient bracket), furnishes a chi-square

value of 42.009, which is significant at the .05 level using a one-tail test

of significance.

Rejection of the null hypothesis of cross-situational consistency

implies that 62 > 0, or that the validities in Table 1 may be

situationally specific. We must be careful not to affirm our own consequent,

however, and thus we conclude that the results of the present analysis imply

that the distribution of observed validities in Table 1 could have been

generated by a set of different pi, plus sampling error. We have no

proof that this is so, but we do have a viable, empirically confirmed

alternative to the assumption that the observed validities were generated by

a constant p and sampling error. It may be discomforting to realize that

o2. 0 and 62 > 0 are both viable alternatives. Yet, multiple

. -R
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and conflicting explanatory models are to be expected in causal, or

confirmatory, analysis (James et al., 1982). When confronted with

conflicting models, the objective is to ascertain if one or more of the

models might be disconfirmed by additional tests, a source of which is

further examination of untested assumptions of one or more of the models.

Presented below is an examination of the assumptions underlying the VG

decision rule that 6 2 > 0 should be rejected when _. 2/S 2 > .75.

A comparative analysis of power. Hunter, Schmidt, and Jackson

(1982, p. 47) did not endorse their form of a chi-square test, which

furnishes a chi-square value of 41.07 for the data in Table 1, because the

chi-square test "has very high statistical power and will therefore reject

the null hypothesis (of cross-situational consistency] given a trivial amount

of variation across studies." In the interest of fairness, we believe that

it is important also to evaluate the power of the VG ratio

in regard to rejecting the null hypothesis of situational

specificity. A recent simulation study by Osburn et al. (1983) suggested

that the decision rule to reject the situational specificity hypothesis when

2/ 2 >.75 results in too much power in the sense that

situational specificity is rejected when low to moderate variance exists

among the pi (true validities), given that the n are not large

(< 100). We wish to address this point with some logic and simple algebra

within the context that sample sizes are not large (e.g., .i 70) and

for the critical value of the VG decision rule (i.e., > .75).

",I' " " • ' . • ," , " . . " . ., • , ' . ' - , "- " •- - . •'- . , .
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Consider the following statement by Schmidt et al. (1982, p. 844):

"We have found that, except when study sample sizes are very large, most of

the variance in observed correlations that is due to artifacts is due to only

one artifact--simple sampling error." To Illustrate this point, Schmidt et

al. (1982) reported that an average of 90% of all of the variance due to

measurable artifacts was attributable to sampling error in two studies that

employed the Schmidt and Hunter "interactive equation," which uses a

simultaneous procedure to estimate variance due to measurable artifacts.

Measurable artifacts included between-study differences in sampling error,

range restriction, criterion reliability, and predictor reliability. These

4 points suggest that for a VG ratio equal to the critical value of .75, we

would attribute 67.5% [i.e., .90(.75)100] of the total observed variance

(i.e., r 2) to sampling error and 7.5% [i.e., .10(.75)100] of the total

observed variance to the remaining three measurable artifacts.

The remaining 25% of the observed variance is regarded as being caused

by unmeasured statistical artifacts according to VG logic. Remember, a VG

ratio = .75 implies_2 = 0 because 25% of the variance Ins 2

can be attributed to unmeasured artifacts (Schmidt et al., 1982, p. 840).

Unmeasured artifacts involve (a) between-study differences in criterion

contamination and deficiency; (b) clerical errors in computation, typing, and

transcription; and (c) "slight differences in the factor structure of tests

4 designed to measure the same construct" (Schmidt et al., 1982, p. 840).

We find it incongruous that the variance attributed to criterion

°
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contamination and deficiency, clerical errors, and "slight" differences in

test factor structures exceeds the variance attributed to range

restriction, criterion reliability, and test reliability by a factor greater

than 3 (i.e., .25/.075 = 3.33 at the critical value of the decision rule).

The adjective "slight" in describing differences in factor structures of

tests is well-taken, for if factor structures of tests vary among studies,

then the VG analysis is mixing apples with bicycles. But how does one

operationalize "slight" in regard to a point-estimate of variance

attributable to this artifact? Well, a reasonable heuristic might be to

interpret "slight" to mean approximately 10% of all of the variance

attributed to unmeasured artifacts, or .10(.25) 100 = 2.5%. This suggests

also that 2.5% of the total variance among the ni (i.e., sr2 ) could

be attributed to "slight" differences in factor structures of tests, which if

anything, seems generous given that only 7.5% of this variance is attributed

to between-study differences in criterion reliability (CR), predictor

reliabilty (PR), and range restriction (RR).

The rationale above means that approximately 22.5% ofSr2

should be viewed as being caused by the unmeasured artifacts of criterion

contamination and deficiency (CCD) and clerical errors (CE). But is all of

the variance among the ri to be attributed to CCD and CE unmeasured? We

think not because many of the causes of CCD and CE that affect between-study

difference in validities are also likely to influence between-study

differences in reliabilities. The logical and statistical progression is

that at least some of the causes of 2 attributed to CCE and CE are in

truth already measured and included in variance among the r

:::: :: ::: ::::::::: .' :' -: . :-::.. - .:- *-. . **-:" : : . .-***..--.--**.,
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attributed to CR and PR.

To illustrate, criterion contamination involves (a) systematic biases

evolving from factors such as opportunity bias, rater bias, group

characteristic bias, and knowledge of predictor bias; and (b) random error

(Blum & Naylor, 1968). Between-study differences in random errors are

obviously included in variation among the r attributed to

between-study differences in CR. Variation in systematic biases over studies

also influences variations in CR (cf. Gulon, 1965; James, Demaree, & Wolf,

1984) and therefore variation among the rI. Much the same can be said

for clerical errors. Be these errors systematic and/or nonsystematic and

involved in criterion and/or predictor measurement, they should influence

variation in validities via variation in CR and PR, respectively.

In sum, it is our belief that variation among the r attributed to

the unmeasured artifacts of CCD and CE is at least in part represented in the

measured artifacts of CR and PR. This suggests (to us at least) that a VG

decision rule which proportions roughly 22.5% of sr2 to the unmeasured

artifacts of CCD and CD is seriously flawed, given that (a) a significant and

likely substantial portion of the variance in validities attributed to CCD

and CE is already represented in the measured artifacts of CR and PR, and (b)

CR and PR, plus RR, account for only 7.5% of s r2 at the critical value

of the decision rule. We propose, therefore, that a more reasonable

hypothesis is that variance among the r due to truly unmeasured

portions of the CCD and CE artifacts is unlikely to be greater than variance

among the r that is caused by the measured artifacts CR, PR, and

v- ~~~~...-....-...............".-- ....- "" S...
'
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RR--that is, 7.5% of .Sr So, if we estimate variance among the rt

due to truly unmeasured sources in CCD and CE at 7.5%, add to this variance

in the ri due to "slight" differences in the factor structures of tests

(i.e., 2.5%), we have approximately 10% of S. 2 attributable to

unmeasured artifacts.

Proceeding on this basis suggests that given a VG ratio = .75, we should

add .10 to the ratio to account for unmeasured artifacts (i.e., attribute 85%

of the observed variance to artifacts). This leaves 15% of the variance

attributable to a' 2. To reduce this value to zero--that is, to define a

VG decision rule that more realistically implies that ._ 0 --

requires that we add .15 to .75. Thus, it is our recommendation that a VG

decision rule of .90 should replace the present decision rule of .75.

Naturally, this rule should be revised as research accumulates regarding

empirical estimates of independent variance due to CCD, CE, and factor

structures of tests. On the other hand, to leave the VG decision rule at .75

is to invite rejection of the null hypothesis that a'2 > 0 when,
22

according to the heuristics above, d 2 could account for approximately

15% of the observed variance.

Summary and conclusions. The primary conclusions based on the

preceding discussion are (a) VG procedures do not furnish irrefutable

evidence of cross-situational consistency, and to imply that they do is to

commit the logical fallacy of affirming the consequent; and (b) the VG

decision rule of O_2_A > .75 should be replaced withl - M -

A 2> .90, given that samples are not large and that the-e -r

6
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measurable artifacts are sampling error, range restriction, criterion

reliabilty, and predictor reliability. Adopting a decision rule of .90

should reduce conflicts between the results of different types of analyses,

such as between VG analysis and chi-square tests of the homogeneity of

population correlations. Applied to the data in Table 1, for example, a

decision rule of .90 would fail to disconfirm the null hypothesis that

I _2 > 0, thus leaving 6_2 > 0, which was confirmed by the

chi-square analysis, as the most useful explanation for the observed

variation among the r1"

This example above is illustrative of the fact that a decision rule of

.90 will likely reduce the percentage of occasions on which an inference that

' 62 = 0 is warranted from the present 46% of validity distributions

*(Schmidt et al., 1982) to a lower, perhaps much lower, percentage of validity

distributions. It follows that the hypothesis of situational specificity is

alive and well (was it ever not?). However, the recommended change to a

decision rule of .90 may stimulate the cry that (a) bias in favor of a

finding of cross-situational consistency is being replaced with bias in favor

of situational specificity, and/or (b) one heuristic decision rule (VG ratio

> .75) which lacks corroborative evidence is merely being replaced with

another heuristic decision rule (VG ratio > .90) that is equally lacking in

corroborative evidence. In response, we largely agree with the latter point

and again underscore the need for research designed to identify an

empirically defensible decision rule. In the interim, we believe that a

decision rule of .90 is more reasonable than a decision rule of .75 for the

reasons stated in the development of the recommended change to a rule of .90.

Si
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Finally, we refer again to the Osburn et al. (1983) simulation study which

clearly supported the need for a decision rule more stringent than .75.

False Assumptions

It was noted briefly that the statistical foundation for the VG

* analytic procedures is furnished by psychometric analogy and structural

equations (cf. Hunter, Schmidt, & Jackson, 1982; Schmidt et al., 1980).

The fundamental structural equation is i = pi + e i, where

*i is the observed score for sample (subject) pi is the

population correlation (true score) for sample (subject) I, and ei is

the sampling (random measurement) error for sample (subject) i. Like the

psychometric equation on which it is based, this equation is

underidentified. That is, for each sample we have one piece of known

data (Ei) and two pieces of unknown data (pi and ei). We thus

have one equation in two unknowns, the result of which is no unique

mathematical solution for either unknown. Adding new samples from

different populations does not help because each new sample contributes one

known and two unknowns, not to mention a new population and a new sampling

distribution. (This discussion and that to follow is based on the usual

case of one sample per situation or population. If it were possible to

obtain many independent, random samples from each situation, then not

only could each pt be estimated, but also the total variance among all

observed correlations could be decomposed empirically into

between-situation variance and within-situation variance, using classic

ANOVA paradigms. Unfortunately, the rarity of many independent samples

I
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from each of two or more different situations requires that we proceed with

but one of a theoretically infinite number of samples from each of K

populations and sampling distributions.)

Similar to classic psychometrics (cf. Gulliksen, 1950; Lord & Novick,

1968), the VG approach proceeds with the underidentified structural

equation and employs a set of assumptions that make possible the estimation

of moments of the unobservable (latent) true scores and error scores in

terms of moments of the observed ri" Given the basic structural

equation Li = pi + 2., it is assumed that (a) the mean error is zero

within each study (population, situation), (b) pi and ti are unrelated

2 = d 2 2 (Hntr 2cmit
across studies, and (c) : d + (Hunter, Schmidt, &

Jackson, 1982). Furthermore, implicit in the use of several VG estimating

equations is the assumption that the errors are normally distributed and/or

the assumption that the within-study error variances are homogeneous. Each

of these assumptions is discussed in greater detail below, where it is

shown that all of the assumptions above are false if the R1 vary or

could vary.

Nonnormality of error distributions. A theoretical sampling

distribution of observed correlations (Iia) exists for each Pi,

where i again references 1, ... , K populations and a refers to

1, ... , A observed correlations in the sampling distribution for each

pi (technically, A ->a4. The variance among the ra for a

particular p1 is designated d. 2 Given that ria = ei +
nri * ti a Pi in

in a given sampling distribution and that pi is a constant in
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that population, it follows that 'r2 = el 2 , where 6e12

. is the error variance for the sampling distribution associated with Pi

(Note that and d_2 refer to variances over K
-:. (N t-9r -e

populations.) The equation employed in VG analysis to estimate error

variance for a sampling distribution derives from the equation:

42 2  (1i A2)2/n (6)

which assumes a large sample (see below) drawn from a bivariate normal

population with correlation coefficient pi (Kendall & Stuart, 1969,

* 1973).

The sample estimating equation based on the single na, or r 1 ,

used in VG analysis is:

2 2 2)2 (7)le... Sri ( 1-r i  / I ) (7)

which is presented and discussed by Ezekiel and Fox (1959) and Fisher

(1954) (Fisher also uses (ni -1) in the denominator of Equation 6).

Kendall and Stuart (1973, p. 304) contended that the use of Equation

6 (and by implication Equation 7) to estimate the variance of a sampling

distribution "is of little value in practice since the distribution of r

tends to normality so slowly [cf. Kendall & Stuart, 1969, p. 388]: it is

unwise to use it for [ni < 500." Fisher (1954) suggested that

Equation 7 should not be used for an n1 < 100. The rationale for these

* statements is that when pi departs from zero and nj, is not large

(e.g., < 100 or 500, depending on the reference), then the distribution of

0 •
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the nla is skewed. In particular, the distribution is negatively

skewed for positive pi. For a given n1, such as 70, the degree of

skew, as well as kurtosis, increases as the (absolute) value of Pt

increases (Ezekiel & Fox, 1959; Fisher, 1954; Kendall & Stuart, 1969, 1973;

Muirhead, 1982). In general, the sampling distribution tends toward

normality, but very slowly, as ni increases, although with very large
-i

Pi the distribution remains nonnormal even with large ni.

Focusing on positive pi, the reason for negative skews is simple;

is bounded by 1.00. The problem is therefore most pronounced for

very large pi. Nevertheless, even with moderate pi andn, <

100 or 500, a ramification of negative skews in sampling distributions for

most if not all of the correlations in Table 1 is that the estimate of

error variance for each of the K samples is less than it should be (cf.

Fisher, 1954). It follows that the estimate of expected error variance

furnished by Equation 3 in Table 2 is also less than it should be. We can

correct these estimates by using the asymptotic expansion furnished by

Ghosh (1966) for estimating the variance of the ria for a single

sampling distribution. Unfortunately, this equation is too complex to

present here. In general, however, the values furnished by the Ghosh

(1966) equation for the correlations in Table 1 are only slightly larger

than those furnished by Equation 7, given ai = 70. For example, with

ri = .50, 6-2 is .0083 based on the Ghosh (1966) equation and

Ii is.03bsdoth 
hh

.0082 based on Equation 7.

The difference between the correct estimates furnished by the Ghosh

-- *' ft';*-
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(1966) equation and those furnished by Equation 7 are trivial (for these

data), and one may argue that the practical approach is to employ Equation

7 to estimate error variance. But a plea for pragmatism (and expediency)

is confronted with the problem that VG procedures were developed to explain

why observed validities vary over situations by testing causal models for

observed validities and distributions of observed validities. Indeed,

causal models and structural equations are presumably employed in VG

analysis in order to "greatly advance" the scientific status of personnel

research. But scientific explanation is not "greatly advanced"

by relying on an equation (Equation 7) that statisticians have shown to be

flawed, however trivial the flaw, for smal' samples and pi 0 0, the

key constituents of VG analysis.

Yet an important commodity in science is time, and the time and

* difficulty required to use the Ghosh (1966) equation versus Equation 7 are

compelling forces to proceed with the pragmatic, indeed parsimonious, use

of Equation 7 to estimate error variance. However, a call for parsimony

and pragmatism is not a defensible position in this case because it is

unnecessary. Specifically, a minimal amount of time spent in converting

the r to Fisher z coefficients (Is) would help to resolve not

only the problem of nonnormal distributions -- distributions of zs

approach normality much more rapidly than (Pearson) rs -- but also most

of the statistical errors discussed below. Thus, we do not urge the

use of the Ghosh (1966) equation or any other equation based on

correlations. We will recommend the use of zs in VG analysis. Before

developing these points, however, it is necessary to document other
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problems with the use of rs in VG analysis.

Nonzero expected values of errors. Hunter, Schmidt, and Jackson

(1982, P. 43) state that "Since the mean error is zero within each study,

the error variances across studies in [sic] the average within study

variance." The first problem with this statement is that the mean

within-study (within-population) error is not equal to zero with skewed

distributions. This point derives from the well-known fact that an r ia

is a biased indicator of its respective pi (cf. Muirhead, 1982). The

expected value for ea is:

E(e.a) = E(r.a) - Ri _

=(i - I Pi.(1-i )1/2[!1 - .1]) pi

_[ -Ri(1-i 2 )/2(n. -1)] (8)

This derivation is based on Muirhead's (1982) equation for E(r) and

involves deletion of a term _(n -2 ) from the E(r) equation. Equation

8 suggests that the mean error within each study takes a negative value for

II
positive pi,' which is expected for negatively skewed sampling

distributions. It suggests also that if the p2jvrte h

.(ela) will also vary because E(eia) is a function of

This connotes that some variation among the ri over studies could be

due to variation among the means of the within-study errors. Finally,

given that the E(eia) are a function of the pi, the possibility

exists that the e and pi in the equation r =i + ei

4 L I.
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are related (A=1 in this equation). We cannot show this directly

with our illustrative data because the pi are unknown (i.e., we have

- only reasonable limits). We may, however, develop another illustration.

A hypothetical distribution of 14 pi (true validities) is presented
in Table 3. The pi vary between .05 and .70. Values of E(eia ) are

given for each pi; these values are based on =70 for all samples.

The values of the E(eia) are of small magnitude, which suggests minimal

bias in variance estimates because of failure to consider variation in the

expected errors. More important is the curvilinear relation between

the Pi and the E(eia ). Technically, E(e.a) assumes a maximum

value at pi =.58, approximately. As pi increases from .05 to .58,

the values of the E(eia ) become increasingly negative; as pi

. increases beyond .58, the values of the E(eia) become decreasingly

negative. Inasmuch as the true validity for a single test would not be

*. expected to exceed .58 very often, we might assume that the pi and

(ia) are generally negatively related. We pursue this point below.

Insert Table 3 about here

Nonhomogeneous error variances. The equation for the variance of

errors for a sampling distribution (Equation 6) shows that 2

varies as function of pi. For positive pi, ' is inversely

related to the magnitude of pt. This results in violation of the usual

assumption in psychometrics that error variances associated with different

0
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true scores are homogeneous. A more important consideration, however, is

the inverse relation between the pi and the a' 2and the

implications of this relation for independence between the the Pi and

the e

Nonindependence between true scores and error scores. Two critical

equations in VG analysis, namely the VG ratio d_2 /sr 2 and 'est--e -r

_a'2 =__ 2 -__,e2 '' (Hunter, Schmidt & Jackson, 1982, p. 44), are
-p -r -

contingent on the assumption that d2 : = .2 + e2, which

in turn is based on the assumptions that the pi and ei are
independent (over K populations or studies) and that E(ri ) = i.

It was noted that generally E(ri) p i and thus we now turn to

the assumption that p and ei are independent. Lord (1960, p. 94)

referred to the assumption of independence between true scores and error

scores as the "independence hypothesis." Lord (1960, p. 91) also noted

that the key concern is the "hypothetical bivariate scatterplot between

true scores and errors of measurement," which "cannot be constructed

empirically." A similar rationale applies here; we wish to know the

relation between the pi and the e1i We cannot construct a

bivariate scatterplot because we do not know the values of either the

pi or the ei inasmuch as the equation ri = pi + e is

underidentified. We may, however, address lack of independence by other

means. For example, a hypothetical set of pi and E(tia ) values

in Table 3 implied nonindependence between the pi and ti. This

issue is now treated using procedures furnished by Lord (1960) and Lord and

Novick (1968).

:-:
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These authors recommended the use of third-order moments to

test the independence hypothesis. The test of concern is based on the

covarlance between the t (in deviation form) and conditional error

variances (i.e., the de2), or Cov(i 412) (Lord & Novick,

1968, p. 229). If the are independent of the e1i then Coy

( d -,2)= 0. But this is obviously not the case because, as

discussed, not only are the de2 nonhomogeneous, but also the-el

Ce vary inversely as a function of the p1. Thus, for positive

Pi, Cov(Pt -ei assumes a nonzero, negative value, from which

we can conclude that the Pi and ei are nonindependent. It follows

that the equation r2 =  i2  2 is in error and that the-~r + -e
statistical foundation for such things as the VG ratio is also in error.

Satisfying the assumptions. The attempt to use the classic

psychometric model to build a statistical foundation for VG analysis results

in violation of many of the classic model's assumptions. Now, if pi =

(i.e., d 2=0), as the VG proponents assume, then many of the problems

discussed in regard to false assumptions dissolve. For example, the error

variances are homogeneous because all pi are the same (for constant

ni). However, assuming p > 0, the sampling distributions are still

likely to be negatively skewed, the expected error variances are not zero,

and the error variance is underestimated using the VG equation. The primary

result of these problems is a small bias in favor of a finding of

situational specificity. Yet, the VG procedures remain troublesome because

they are represented as a test of the hypothesis that d 2>0.

--
6:
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But the moment we necessarily entertain the possibility that the Pi vary,

we must also allow for the possibility of heterogeneous error variances and

nonindependence between the pi and e i. Thus, under the stated basis

for the null hypothesis, and making the not unrealistic assumption that the

pi are never precisely equal, it follows directly that the VG procedures

furnish biased estimates because statistical assumptions are not satisfied.

How serious is the bias? An example presented shortly indicates a small

overall bias in favor of a finding of cross-situational consistency for the

illustrative data in Table 1. Other investigators have addressed at least

some of the assumptions for VG analysis and have concluded that (a) sampling

distributions of observed correlations are "approximately normal" (Pearlman

et al., 1980 p. 381) or "close to normal" (Schmidt et al., 1981, p. 174)

except for very large values of p, which implies little or no bias due to

skewed sampling distributions for selection studies at least; and (b)

nonindependence between the pi and ei results in minor

underestimation of the value of c 2 (Burke, 1984; Linn & Dunbar, 1982).

Callender, Osburn, Greener, and Ashworth (1982) used Monte Carlo techniques

to show that a skewed distribution of hypothetical pi had no influence on

estimates of .22. The general conclusion, therefore, appears to be

that whatever bias exists in VG analysis is small and, pragmatically, has

little influence on results. Consequently, one may proceed with VG analysis

without grave concern for bias introduced by violations of assumptions.

A reasonable opinion, but not one that we share. To reiterate briefly,

our view is that if (a) an avowed objective of using VG procedures is to

.. -. . a.- *... o . *...o.... . ..- ... . . . .... .. ... . . .. *- ..... *. .
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advance the scientific status of personnel research (cf. Schmidt A Hunter,

1977), then (b) the VG procedures should stand up to scientific scrutiny.

While science is not blind to the need for pragmatics and occasional

expediency, the pattern of formal statistical error after formal statistical

error does little to advance the scientific merits of the VG enterprise.

Even if the overall degree of bias is trivial, it would hardly do to attempt -'

to promote the VG procedures as a scientific advancement when pragmatics are S

the justifications for violations of almost every statistical assumption of

the model. Most importantly, it is unnecessary to have to rely to this

degree on pragmatics because a simple solution exists that reduces the bias S

and increases the scientific precision of the VG procedure.

As noted briefly, the simple solution is to transform the observed

validities (ri) Into Fisher z coefficients and to base the VG analysis

on these coefficients. For sample sizes greater than 50, the sampling

distribution of zs is approximately normal, irrespective of the value of

Pi (Kendall & Stuart, 1969, who also present estimation equations for

< 50). Furthermore, _ based on zs is essentially

independent of the value of pi because all '_ 2 have an estimated

value of 1/(ni-3) (for constant nip variable ni is addressed by

weighting in VG analysis). A very slight bias may persist if E(eia)

based on z coefficients is not zero, but this is an approximation that we

can live with (see Hotelllng, 1953 and Kendall & Stuart, 1969 for further

discussions of this issue).

In any event, the use of z coefficients in place of correlation

.. .. . . , ... .~~~~~~~~~......... ,•.... ..-....... .... .... . . .'..-, ., .-a : q . . ,. ,',s--
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coefficients places VG analysis on a sounder statistical footing even though

it does not ameliorate all of the statistical problems. Interestingly,

Schmidt and Hunter (1977) originally used zs in VG analysis to ensure

against covariation between the pi and ei, but switched to observed

correlations under the assumption that their formula for sampling error was

"very accurate" (Schmidt et al., 1980, p. 660). Later, the reason for the

switch from zs to rs was given as "the effect of Fisher's z

transformation is to assign extra weight to large observed validity

coefficients" (Schmidt et al., 1982, p. 839). We interpret the term "assign

extra weight" to mean that the difference between the value of z and the

value of r increases in absolute value as the value of r increases.

This, of course, is the price one pays to achieve a sampling distribution of

zs that approaches normality more quickly than a sampling distribution of

rs. It also suggests that the variance among the zs will be greater than

the variance among the rs and that the VG ratio will tend to be lower for

N zs than for rs. These points are illustrated by a reanalysis of the data

in Table 1 using Fisher z transformations. The VG ratio based on zs is
A 2

.0149/.021 - .71, where e = 1/67. The mean Fisher z for the

transformed n in Table 1 is .56, and the variance of the zs is .021.

Clearly, .71 differs little from the VG ratio of .75 based on rs and

Equation 4 (Table 2), although the difference does indicate a slight bias in

VG procedures based on rs in favor of a finding of cross-situational

consistency.

It is important to note that this slight bias overestimates

the bias that would likely be obtained with real selection data
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because the illustrative data in Table 1 involve only sampling error and

variation about a mean correlation (i.e., .50) equal to what is considered by

VG proponents to be the "true validity" of many tests (cf. Pearlman et al.,

1980). With real data the VG approach works with a distribution of

correlations whose values have also been attenuated and/or reduced by

criterion (and predictor) measurement error and range restriction in

estimating the predicted variance among the observed correlations that is

due to measurable statistical artifacts (cf. Pearlman et al., 1980; Schmidt

et al., 1980). The corollaries to this point are that (a) t, absolute

magnitudes of the LI will be lower than those in Table 1, from which it

follows that (b) the difference between statistical values based on r and

z, such as the VG ratio, will be reduced because the differences between

values of r and values of z decrease as the absolute value of r

decreases. But then VG techniques are not limited to selection research and

may be employed for distributions in which the rs are of greater magnitude

than typically found in selection studies or the illustration used here.

Indeed, VG analysis based on rs may be inappropriate as a general

method for its flaws become increasingly evident as the correlations

increase In magnitude and assumptions become more tenuous. Of course, a

simple and statistically more precise alternative exists, namely to use z

coefficients in analyses.

Recommendations and Conclusions

Three major recommendations have been proposed. First, inferences based

on the results of VG research should be less dramatic. Empirical support for

a cross-situational consistency model implies only that this model furnishes

0



Validity Generalization

33

a useful basis for explaining the distribution of observed validities. This

model is not unique, irrefutable, or proven. Second, the decision rule for

the VG ratio should be .90 rather than .75. This recommendation indicates

that 90% of the variance in observed validities should be attributed to

sampling error and other measurable artifacts before one infers that2
2= 0. The remaining 10% of the variance is assumed to be due to

unmeasured artifacts. This recommendation is subject to immediate change as

soon as research is obtained pertaining to the unique influences of criterion

problems, clerical errors, and predictor factor structures on variation among

validities. Third, VG analyses should employ Fisher z coefficients rather

than (Pearson) correlation coefficients. The objective here is to place VG

analysis on a sounder statistical footing.

A likely result of the second and third recommendations, especially the

proposed change in the VG decision rule (which applies to the use of Fisher

z coefficients in VG analysis), is that fewer VG analyses will conclude

that cross-situational consistency is a useful model for explaining variation

in validities. This conclusion has the somewhat unfortunate implication that

all validities must therefore vary. There are other views. Heretofore we

have focused on extremes for the purpose of contrast. Now let us ask whether

it is realistic to assume that p is different for each situation, or at

4 least different enough to warrant a separate analysis for each situation?

Probably not. But it is, in our opinion, as realistic as assuming that P is

a constant for every situation or, at least, that the p's do not vary

sufficiently to warrant separate analyses for at least some situations.

Fortunately, situational specificity and cross-situational consistency as
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described in this paper are but two of many possible views. Indeed, the most

useful models for explaining variation in validities probably lie in some

middle ground between these two extremes. This is not the place to attempt

to review a voluminous literature on theoretical models. We suggest only

that attempts to assess situational specificity and cross-situational

consistency will be enhanced by including situational variables in analyses.

Measures representing membership in gross categories such as job families

(cf. Pearlman, 1980) are helpful but lack the explanatory power furnished by

measurement and explicit analysis of specific aspects of situations (e.g.,

stress, leadership) that presumably influence correlations between person

variables and Job performance (cf. James, Demaree, & Hater, 1980). An ideal

strategy would be to attempt to develop structural (causal, explanatory)

models of job performance (and attitudes) that involve both person variables

and situational variables.

In closing, although we have been critical of VG procedures, we do

believe that the VG approach is creative and has the potential to make a

contribution to research. Our key concern has been the overdramatic

interpretations of the results of validity generalization analyses in favor

of cross-situational consistency. These concerns apply also to validity

generalization to the extent that "estimated true validities" and

"credibility values" are subject to alternative models involving a

potentially greater degree of situational specificity than indicated by VG

assumptions and decisions rules. On the other hand, the issue of

q differential validity In the context of validity generalization (cf. Hunter &

Hunter, 1984) Is outside the bounds of this discussion. Treatment of

44_
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systematic variation within situations due to such things as ethnic, race,

and sex distinctions requires additional thought and statistical modeling.

Finally, as indicated by the preceeding discussion, no attempt was made to

exhuast all possible concerns with VG procedures. The issues addressed here

were selected because they were considered to be among the more salient

issues at this time, especially in the context of testing the goodness of fit

of causal models for validities and validity distributions.
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Footnotes

1A recent study by Schmidt and Hunter (1984) applied VG procedures to

validity data obtained from four different cohorts of stenographers (K = 4)

from the same organization. The objective of the study was to demonstrate

that "if the statistical artifacts operating are the same, observed

validities will vary as much within the same setting as they do across

settings . . . merely as a result of artifacts such as sampling error"

(Schmidt & Hunter, 1984, p. 320). Unfortunately, a sample of only four

correlations was available for each of five different tests. The instability

of results based on such a small sample of rs is indicated by the values of

2 2the VG ratio (i.e., a- /s. ) for the five tests, which were

4.0, 1.31, .709, .422, and .81. (Schmidt and Hunter (1984] reported results

in terms of a "new" ratio, namely srI16e , which took values of

.50, .88, 1.19, 1.54, and 1.11 for the five tests, respectively). One should

probably question the generalizability of data which, based on the "old" VG

ratio, suggest for one test that 400% of the observed variance for

correlations is accounted for by sampling error. Thus, we will not address

this study again in this paper.

I

, " + . . . +"" ' "1 + ". " '+ "' " . . " . . .1 . . .+ + . N 
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Table 1

Contrived Validity Coefficients

.72 .54 .45

.68 .53 .44

.65 .52 .43

.63 .51 .42

.61 .50 .41

.59 .50 .39

4 .58 .49 .37

.57 .48 .35

.56 .47 .32

.55 .46 .26

4

*I
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Table 2

Validity Generalization Equations and Estimates

1. Mean observed validity coefficient (r):

K -- K -

=.50
E n
K -

where all n. =70 and K =30 studies or situations

2

2. Variance among observed validity coefficients (6)
-:r

En (r T )2  Er -

K-- K-
- ___ .011

E~ En K

3. Estimate of the variance among observed validity coefficients

expected due to sampling error (ik average within study variance)(02)

E[n (1-r 2)2/ (n -1
K r -i2 2

a a _____-.0082

e En~ (n.-1)

*4. Estimate of the proportion of variance in observed validity

coefficients (s2  that is attributable to sampling error (a2)

ar2 /S2  . 75
-e -T
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Table 3

Population Correlations and Expected Values of Sampling Errors

Population Correlation (P_) Expected Value of Error [E(eia ) ]

.70 -. 00259

.65 -.00272

.60 -.00278

.55 -.00278

.50 -.00272

.45 -.00260

.40 -.00243

.35 -.00223

.30 -.00198

.25 -.00170

.20 -.00139

.15 -.00106

.10 -.00072

.05 -.00036

Note. ni 70 for all samples.
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